118 research outputs found

    Design and FDM/FFF Implementation of a Compact Omnidirectional Wheel for a Mobile Robot and Assessment of ABS and PLA Printing Materials

    Get PDF
    This paper proposes the design and 3D printing of a compact omnidirectional wheel optimized to create a small series of three-wheeled omnidirectional mobile robots. The omnidirectional wheel proposed is based on the use of free-rotating passive wheels aligned transversally to the center of the main wheel and with a constant separation gap. This paper compares a three inner-passive wheels design based on mass-produced parts and 3D printed elements. The inner passive wheel that better combines weight, cost, and friction is implemented with a metallic ball bearing fitted inside a 3D printed U-grooved ring that holds a soft toric joint. The proposed design has been implemented using acrylonitrile butadiene styrene (ABS) and tough polylactic acid (PLA) as 3D printing materials in order to empirically compare the deformation of the weakest parts of the mechanical design. The conclusion is that the most critical parts of the omnidirectional wheel are less prone to deformation and show better mechanical properties if they are printed horizontally (with the axes that hold the passive wheels oriented parallel to the build surface), with an infill density of 100% and using tough PLA rather than ABS as a 3D printing material

    Optimal PID Control of a Brushed DC Motor with an Embedded Low-Cost Magnetic Quadrature Encoder for Improved Step Overshoot and Undershoot Responses in a Mobile Robot Application

    Get PDF
    The development of a proportional–integral–derivative (PID) control system is a simple, practical, highly effective method used to control the angular rotational velocity of electric motors. This paper describes the optimization of the PID control of a brushed DC motor (BDCM) with an embedded low-cost magnetic quadrature encoder. This paper demonstrates empirically that the feedback provided by low-cost magnetic encoders produces some inaccuracies and control artifacts that are not usually considered in simulations, proposing a practical optimization approach in order to improve the step overshoot and undershoot controller response. This optimization approach is responsible for the motion performances of a human-sized omnidirectional mobile robot using three motorized omnidirectional wheels

    Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments

    Get PDF
    This paper proposes a method to improve the angular velocity measured by a low-cost magnetic rotary encoder attached to a brushed direct current (DC) motor. The low-cost magnetic rotary encoder used in brushed DC motors use to have a small magnetic ring attached to the rotational axis and one or more fixed Hall-effect sensors next to the magnet. Then, the Hall-effect sensors provide digital pulses with a duration and frequency proportional to the angular rotational velocity of the shaft of the encoder. The drawback of this mass produced rotary encoder is that any structural misalignment between the rotating magnetic field and the Hall-effect sensors produces asymmetric pulses that reduces the precision of the estimation of the angular velocity. The hypothesis of this paper is that the information provided by this low-cost magnetic rotary encoder can be processed and improved in order to obtain an accurate and precise estimation of the angular rotational velocity. The methodology proposed has been validated in four compact motorizations obtaining a reduction in the ripple of the estimation of the angular rotational velocity of: 4.93%, 59.43%, 76.49%, and 86.75%. This improvement has the advantage that it does not add time delays and does not increases the overall cost of the rotary encoder. These results showed the real dimension of this structural misalignment problem and the great improvement in precision that can be achieved.This research was funded by the Spanish Ministry of Science and Innovation, grant number PID2020-118874RB-I00

    Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories

    Get PDF
    Odometry is a simple and practical method that provides a periodic real-time estimation of the relative displacement of a mobile robot based on the measurement of the angular rotational speed of its wheels. The main disadvantage of odometry is its unbounded accumulation of errors, a factor that reduces the accuracy of the estimation of the absolute position and orientation of a mobile robot. This paper proposes a general procedure to evaluate and correct the systematic odometry errors of a human-sized three-wheeled omnidirectional mobile robot designed as a versatile personal assistant tool. The correction procedure is based on the definition of 36 individual calibration trajectories which together depict a flower-shaped figure, on the measurement of the odometry and ground truth trajectory of each calibration trajectory, and on the application of several strategies to iteratively adjust the effective value of the kinematic parameters of the mobile robot in order to match the estimated final position from these two trajectories. The results have shown an average improvement of 82.14% in the estimation of the final position and orientation of the mobile robot. Therefore, these results can be used for odometry calibration during the manufacturing of human-sized three-wheeled omnidirectional mobile robots

    Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles

    Get PDF
    This paper assesses the over time performance of a custom electronic nose (eNose) composed of an array of commercial low-cost and single-type miniature metal-oxide (MOX) semiconductor gas sensors. The eNose uses 16 BME680 versatile sensor devices, each including an embedded non-selective MOX gas sensor that was originally proposed to measure the total volatile organic compounds (TVOC) in the air. This custom eNose has been used previously to detect ethanol and acetone, obtaining initial promising classification results that worsened over time because of sensor drift. The current paper assesses the over time performance of different classification methods applied to process the information gathered from the eNose. The best classification results have been obtained when applying a linear discriminant analysis (LDA) to the normalized conductance of the sensing layer of the 16 MOX gas sensors available in the eNose. The LDA procedure by itself has reduced the influence of drift in the classification performance of this single-type eNose during an evaluation period of three month

    Enhancing the Sense of Attention from an Assistance Mobile Robot by Improving Eye-Gaze Contact from Its Iconic Face Displayed on a Flat Screen

    Get PDF
    One direct way to express the sense of attention in a human interaction is through the gaze. This paper presents the enhancement of the sense of attention from the face of a human-sized mobile robot during an interaction. This mobile robot was designed as an assistance mobile robot and uses a flat screen at the top of the robot to display an iconic (simplified) face with big round eyes and a single line as a mouth. The implementation of eye-gaze contact from this iconic face is a problem because of the difficulty of simulating real 3D spherical eyes in a 2D image considering the perspective of the person interacting with the mobile robot. The perception of eye-gaze contact has been improved by manually calibrating the gaze of the robot relative to the location of the face of the person interacting with the robot. The sense of attention has been further enhanced by implementing cyclic face explorations with saccades in the gaze and by performing blinking and small movements of the mouth

    Application of a Single-Type eNose to Discriminate the Brewed Aroma of One Caffeinated and Decaffeinated Encapsulated Espresso Coffee Type

    Get PDF
    This paper assesses a custom single-type electronic nose (eNose) applied to differentiate the complex aromas generated by the caffeinated and decaffeinated versions of one encapsulated espresso coffee mixture type. The eNose used is composed of 16 single-type (identical) metal–oxide semiconductor (MOX) gas sensors based on microelectromechanical system (MEMS). This eNose proposal takes advantage of the small but inherent sensing variability of MOX gas sensors in order to provide a multisensorial description of volatiles or aromas. Results have shown that the information provided with this eNose processed using LDA is able to successfully discriminate the complex aromas of one caffeinated and decaffeinated encapsulated espresso coffee type

    Classification of Three Volatiles Using a Single-Type eNose with Detailed Class-Map Visualization

    Get PDF
    The use of electronic noses (eNoses) as analysis tools are growing in popularity; however, the lack of a comprehensive, visual representation of how the different classes are organized and distributed largely complicates the interpretation of the classification results, thus reducing their practicality. The new contributions of this paper are the assessment of the multivariate classification performance of a custom, low-cost eNose composed of 16 single-type (identical) MOX gas sensors for the classification of three volatiles, along with a proposal to improve the visual interpretation of the classification results by means of generating a detailed 2D class-map representation based on the inverse of the orthogonal linear transformation obtained from a PCA and LDA analysis. The results showed that this single-type eNose implementation was able to perform multivariate classification, while the class-map visualization summarized the learned features and how these features may affect the performance of the classification, simplifying the interpretation and understanding of the eNose results

    The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes

    Get PDF
    This paper describes the evolution of the Assistant Personal Robot (APR) project developed at the Robotics Laboratory of the University of Lleida, Spain. This paper describes the first APR-01 prototype developed, the basic hardware improvement, the specific anthropomorphic improvements, and the preference surveys conducted with engineering students from the same university in order to maximize the perceived affinity with the final APR-02 mobile robot prototype. The anthropomorphic improvements have covered the design of the arms, the implementation of the arm and symbolic hand, the selection of a face for the mobile robot, the selection of a neutral facial expression, the selection of an animation for the mouth, the application of proximity feedback, the application of gaze feedback, the use of arm gestures, the selection of the motion planning strategy, and the selection of the nominal translational velocity. The final conclusion is that the development of preference surveys during the implementation of the APR-02 prototype has greatly influenced its evolution and has contributed to increase the perceived affinity and social acceptability of the prototype, which is now ready to develop assistance applications in dynamic workspaces.This research was partially funded by the Accessibility Chair promoted by Indra, Adecco Foundation and the University of Lleida Foundation from 2006 to 2018. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results
    • …
    corecore